资源类型

期刊论文 108

年份

2023 10

2022 8

2021 12

2020 11

2019 7

2018 3

2017 4

2016 6

2015 3

2014 7

2013 8

2012 2

2011 3

2010 5

2009 2

2008 4

2007 4

2006 1

2005 1

2003 1

展开 ︾

关键词

三峡升船机 3

三峡工程 2

升船机 2

塔柱 2

施工技术 2

螺母柱 2

齿条 2

ANSYS 1

COVID-19 1

PCR核酸检测 1

T形节点 1

主题爬虫;本体;优先度评估;模拟退火;暴雨灾害 1

五螺箍 1

全局最优解 1

全站仪极坐标法 1

动力学 1

化学合成制药废水 1

北方旱区 1

变形监测 1

展开 ︾

检索范围:

排序: 展示方式:

Transport of bacterial cell (

Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1242-0

摘要: Abstract • The recharge pond dwelling process induced changes in cell properties. • Cell properties and solution chemistry exerted confounding effect on cell transport. • E. coli cells within different recharge water displayed different spreading risks. Commonly used recharge water resources for artificial groundwater recharge (AGR) such as secondary effluent (SE), river water and rainfall, are all oligotrophic, with low ionic strengths and different cationic compositions. The dwelling process in recharge pond imposed physiologic stress on Escherichia coli (E. coli) cells, in all three types of investigated recharge water resources and the cultivation of E. coli under varying recharge water conditions, induced changes in cell properties. During adaptation to the recharge water environment, the zeta potential of cells became more negative, the hydrodynamic diameters, extracellular polymeric substances content and surface hydrophobicity decreased, while the cellular outer membrane protein profiles became more diverse. The mobility of cells altered in accordance with changes in these cell properties. The E. coli cells in rainfall recharge water displayed the highest mobility (least retention), followed by cells in river water and finally SE cells, which had the lowest mobility. Simulated column experiments and quantitative modeling confirmed that the cellular properties, driven by the physiologic state of cells in different recharge water matrices and the solution chemistry, exerted synergistic effects on cell transport behavior. The findings of this study contribute to an improved understanding of E. coli transport in actual AGR scenarios and prediction of spreading risk in different recharge water sources.

关键词: Artificial groundwater recharge     E. coli     Transport     Simulated column experiments     Modeling    

Experimental and numerical analysis of beam to column joints in steel structures

Gholamreza ABDOLLAHZADEH, Seyed Mostafa SHABANIAN

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 642-661 doi: 10.1007/s11709-017-0457-z

摘要: The behaviors such as extreme non-elastic response, constant changes in roughness and resistance, as well as formability under extreme loads such as earthquakes are the primary challenges in the modeling of beam-to-column connections. In this research, two modeling methods including mechanical and neural network methods have been presented in order to model the complex hysteresis behavior of beam-to-column connections with flange plate. First, the component-based mechanical model will be introduced in which every source of transformation has been shown only with geometrical and material properties. This is followed by the investigation of a neural network method for direct extraction of information out of experimental data. For the validation of behavioral curves as well as training of the neural network, the experiments were carried out on samples with real dimensions of beam-to-column connections with flange plate in the laboratory. At the end, the combinational modeling framework is presented. The comparisons reveal that the combinational modeling is able to display the complex narrowed hysteresis behavior of the beam-to-column connections with flange plate. This model has also been successfully employed for the prediction of the behavior of a newly designed connection.

关键词: beam to column connections     experiments     component method     neural network model     combinational modeling    

Special Column on

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 323-324 doi: 10.1007/s11709-014-0288-0

Cu/Cr co-stabilization mechanisms in a simulated AlO-FeO-CrO-CuO waste system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1408-4

摘要:

• Cu and Cr can be mostly incorporated into CuFexAlyCr2xyO4 with a spinel structure.

关键词: Spinel structure     Copper     Chromium     Co-stabilization     Thermal treatment    

Appraising the potential of calcium sulfoaluminate cement-based grouts in simulated permafrost environments

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 722-731 doi: 10.1007/s11709-023-0950-5

摘要: The aim of this study is to appraise the potential of calcium sulfoaluminate (CSA) cement-based grouts in simulated permafrost environments. The hydration and performance of CSA cement-based grouts cured in cold environments (10, 0, and −10 °C) are investigated using a combination of tests, including temperature recording, X-ray diffraction (XRD) tests, thermogravimetric analysis (TGA), and unconfined compressive strength (UCS) tests. The recorded temperature shows a rapid increase in temperature at the early stage in all the samples. Meanwhile, results of the TGA and XRD tests show the generation of a significant quantity of hydration products, which indicates the rapid hydration of CSA cement-based grouts at the early stage at low temperatures. Consequently, the CSA cement-based grouts exhibit remarkably high early strength. The UCS values of the samples cured for 2 h at −10, 0, and 10 °C are 6.5, 12.0, and 12.3 MPa, respectively. The UCS of the grouts cured at −10, 0, and 10 °C increases continuously with age and ultimately reached 14.9, 19.0, and 30.6 MPa at 28 d, respectively. The findings show that the strength of grouts fabricated using CSA cement can develop rapidly in cold environments, thus rendering them promising for permafrost applications.

关键词: permafrost     low temperatures     calcium sulfoaluminate cement-based grouts     hydration reaction     compressive strength    

Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

REN Hesheng, LAI Lingjun, CUI Yongzheng

《能源前沿(英文)》 2008年 第2卷 第4期   页码 374-380 doi: 10.1007/s11708-008-0079-1

摘要: A single-blow transient testing technique considering the effect of longitudinal heat conduction is suggested for determining the average convection heat transfer coefficient of compact heat exchanger surface. By matching the measured outlet fluid temperature variation with similar theoretical curves, the dimensionless longitudinal conduction parameter , the time constant of the inlet fluid temperature , and the number of heat transfer units can be determined simultaneously using the Levenberg-Marquardt nonlinear parameter estimation method. Both sensitivity analysis and numerical experiments with simulated measurements containing random errors show that the method in the present investigation provides satisfactory accuracy of the estimated parameter , which characterizes the heat transfer performance of compact heat exchanger surfaces.

关键词: coefficient     dimensionless longitudinal     longitudinal     temperature     conduction    

Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing

Meenu GUPTA, Surinder Kumar GILL

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 417-426 doi: 10.1007/s11465-012-0343-2

摘要:

Glass fiber reinforced plastics (GFRPs) composite is considered to be an alternative to heavy exortic materials. According to the need for accurate machining of composites has increased enormously. During machining, the obtaining cutting force is an important aspect. The present investigation deals with the study and development of a cutting force prediction model for the machining of unidirectional glass fiber reinforced plastics (UD-GFRP) composite using regression modeling and optimization by simulated annealing. The process parameters considered include cutting speed, feed rate and depth of cut. The predicted values radial cutting force model is compared with the experimental values. The results of prediction are quite close with the experimental values. The influences of different parameters in machining of UD-GFRP composite have been analyzed.

关键词: UD-GFRP     ANOVA     radial cutting force     PCD tool     Taguchi method     regression analysis     simulated annealing     multi objective techniques    

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1346-1355 doi: 10.1007/s11705-021-2040-3

摘要: The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.

关键词: magnetic chromatography     simulated moving bed chromatography     magnetic nanoparticles     size fractionation    

Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions

Ruifen Liu, Elizabeth Fassman-Beck

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0951-5

摘要: Hydrologic performance of bioretention systems is significantly influenced by the media composition and underdrain configuration. This research measured hydrologic performance of column-scale bioretention systems during a synthetic design storm of 25.9 mm, assuming a system area:catchment area ratio of 5%. The laboratory experiments involved two different engineered media and two different drainage configurations. Results show that the two engineered media with different sand aggregates were able to retain about 36% of the inflow volume with free drainage configuration. However, the medium with marine sand is better at delaying the occurrence of drainage than the one with pumice sand, denoting the better detention ability of the former. For both engineered media, an underdrain configuration with internal water storage (IWS) zone lowered drainage volume and peak drainage rate as well as delayed the occurrence of drainage and peak drainage rate, as compared to a free drainage configuration. The USEPA SWMM v5.1.11 model was applied for the free drainage configuration case, and there is a reasonable fit between observed and modeled drainage-rates when media-specific characteristics are available. For the IWS drainage configuration case, air entrapment was observed to occur in the engineered medium with marine sand. Filling of an IWS zone is most likely to be influenced by many factors, such as the structure of the bioretention system, medium physical and hydraulic properties, and inflow characteristics. More research is needed on the analysis and modeling of hydrologic process in bioretention with IWS drainage configuration.

关键词: Bioretention     Hydrologic process     Underdrain configuration     SWMM     Modeling    

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 162-172 doi: 10.1007/s11705-009-0267-5

摘要: Bubble columns are widely used in chemical and biochemical processes due to their excellent mass and heat transfer characteristics and simple construction. However, their fundamental hydrodynamic behaviors, which are essential for reactor scale-up and design, are still not fully understood. To develop design tools for engineering purposes, much research has been carried out in the area of computational fluid dynamics (CFD) modeling and simulation of gas-liquid flows. Due to the importance of the bubble behavior, the bubble size distribution must be considered in the CFD models. The population balance model (PBM) is an effective approach to predict the bubble size distribution, and great efforts have been made in recent years to couple the PBM into CFD simulations. This article gives a selective review of the modeling and simulation of bubble column reactors using CFD coupled with PBM. Bubble breakup and coalescence models due to different mechanisms are discussed. It is shown that the CFD-PBM coupled model with proper bubble breakup and coalescence models and interphase force formulations has the ability of predicting the complex hydrodynamics in different flow regimes and, thus, provides a unified description of both the homogeneous and heterogeneous regimes. Further study is needed to improve the models of bubble coalescence and breakup, turbulence modification in high gas holdup, and interphase forces of bubble swarms.

关键词: bubble column     computational fluid dynamics     bubble breakup and coalescence     population balance model     bubble size distribution    

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 460-469 doi: 10.1007/s11705-022-2224-5

摘要: Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment. Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages. However, NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors. In this study, a rotating packed bed (RPB) was employed as a gas–liquid absorption device to elevate the NO removal efficiency (ηNO) by aqueous persulfate ((NH4)2S2O8) activated by ferrous ethylenediaminetetraacetate (Fe2+-EDTA). The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB. Increasing the concentration of (NH4)2S2O8 and liquid–gas ratio could promoted the oxidation and absorption of NO while the ηNO decreased with the increase of the gas flow and NO concentration. In addition, improving the high gravity factor increased the ηNO and the total volumetric mass transfer coefficient (KGα) which raise the ηNO up to more than 75% under the investigated system. These observations proved that the RPB can enhance the gas–liquid mass transfer process in NO absorption. The correlation formula between KGα and the influencing factors was determined by regression calculation, which is used to guide the industrial scale-up application of the system in NO removal. The presence of O2 also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis, it was revealed that Fe2+-EDTA activated (NH4)2S2O8 to produce •SO4, •OH and •O2, played a leading role in the oxidation of NO, to produce NO3 as the final product. The obtained results demonstrated a good applicable potential of RPB/PS/Fe2+-EDTA in the removal of NO from flue gases.

关键词: rotating packed bed     Fe2+-EDTA     sulfate radical     hydroxyl radical     NO removal efficiency    

The implications of planting mode on cadmium uptake and remobilization in rice: Field experiments across

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1431-5

摘要:

•Direct seeding (DS) method led to more distributed Cd in aerial parts of rice.

关键词: Cadmium     Genotypes     Growth stages     Micro X-ray fluorescence     Planting mode    

Migration and fate of polycyclic aromatic hydrocarbons in bioretention systems with different media: experiments

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1802-9

摘要:

● Bioretention systems showed > 92% load reduction rates of PAHs.

关键词: Bioretention     Polycyclic aromatic hydrocarbons     HYDRUS-1D     Model simulation     Migration    

A metadata model for collaborative experiments and simulations in earthquake engineering

Jean-Pierre BARDET, Nazila MOKARRAM, Fang LIU

《结构与土木工程前沿(英文)》 2010年 第4卷 第2期   页码 133-153 doi: 10.1007/s11709-010-0036-z

摘要: Research projects in earthquake engineering yield a very large amount of complex data from experiments and computer simulations. Understanding and exchanging these complicated and voluminous data sets prompted the development of metadata models that document the processes of data generation, and facilitate the collaboration and exchange of information between researchers. The present metadata model was designed to document and exchange a large number of large data files in earthquake engineering, but is applicable to other fields of engineering and science. The model was conceived based on a series of former data models, which were unduly complicated and limited to few types of experiments. Simpler than its predecessors, the present metadata model applies to all kinds of earthquake engineering experiments. It was developed in the object-oriented framework using Protégé. Its applications are illustrated with examples from centrifuge experiments.

关键词: metadata     data     documentation     experiment     simulation    

Centrifuge experiments for shallow tunnels at active reverse fault intersection

Mehdi SABAGH, Abbas GHALANDARZADEH

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 731-745 doi: 10.1007/s11709-020-0614-7

摘要: Tunnels extend in large stretches with continuous lengths of up to hundreds of kilometers which are vulnerable to faulting in earthquake-prone areas. Assessing the interaction of soil and tunnel at an intersection with an active fault during an earthquake can be a beneficial guideline for tunnel design engineers. Here, a series of 4 centrifuge tests are planned and tested on continuous tunnels. Dip-slip surface faulting in reverse mechanism of 60-degree is modeled by a fault simulator box in a quasi-static manner. Failure mechanism, progression and locations of damages to the tunnels are assessed through a gradual increase in Permanent Ground Displacement (PGD). The ground surface deformations and strains, fault surface trace, fault scarp and the sinkhole caused by fault movement are observed here. These ground surface deformations are major threats to stability, safety and serviceability of the structures. According to the observations, the modeled tunnels are vulnerable to reverse fault rupture and but the functionality loss is not abrupt, and the tunnel will be able to tolerate some fault displacements. By monitoring the progress of damage states by increasing PGD, the fragility curves corresponding to each damage state were plotted and interpreted in related figures.

关键词: reverse fault rupture     continuous tunnel     geotechnical centrifuge     ground surface deformations     fragility curves    

标题 作者 时间 类型 操作

Transport of bacterial cell (

Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin

期刊论文

Experimental and numerical analysis of beam to column joints in steel structures

Gholamreza ABDOLLAHZADEH, Seyed Mostafa SHABANIAN

期刊论文

Special Column on

期刊论文

Cu/Cr co-stabilization mechanisms in a simulated AlO-FeO-CrO-CuO waste system

期刊论文

Appraising the potential of calcium sulfoaluminate cement-based grouts in simulated permafrost environments

期刊论文

Sensitivity analysis and numerical experiments on transient test of compact heat exchanger surfaces

REN Hesheng, LAI Lingjun, CUI Yongzheng

期刊论文

Prediction of cutting force in turning of UD-GFRP using mathematical model and simulated annealing

Meenu GUPTA, Surinder Kumar GILL

期刊论文

Continuous size fractionation of magnetic nanoparticles by using simulated moving bed chromatography

Carsten-Rene Arlt, Dominik Brekel, Stefan Neumann, David Rafaja, Matthias Franzreb

期刊论文

Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions

Ruifen Liu, Elizabeth Fassman-Beck

期刊论文

Simulation of bubble column reactors using CFD coupled with a population balance model

Tiefeng WANG

期刊论文

Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate

期刊论文

The implications of planting mode on cadmium uptake and remobilization in rice: Field experiments across

期刊论文

Migration and fate of polycyclic aromatic hydrocarbons in bioretention systems with different media: experiments

期刊论文

A metadata model for collaborative experiments and simulations in earthquake engineering

Jean-Pierre BARDET, Nazila MOKARRAM, Fang LIU

期刊论文

Centrifuge experiments for shallow tunnels at active reverse fault intersection

Mehdi SABAGH, Abbas GHALANDARZADEH

期刊论文